466 research outputs found

    Propagation of a laser beam in a plasma

    Get PDF
    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent

    The time-history of a satellite around an oblate planet

    Get PDF
    Time history of satellite around oblate plane

    The Higher Orders of the Theory of Strong Perturbations in Quantum Mechanics and the Secularity Problem

    Full text link
    We solve the higher order equations of the theory of the strong perturbations in quantum mechanics given in M. Frasca, Phys. Rev. A 45, 43 (1992), by assuming that, at the leading order, the wave function goes adiabatically. This is accomplished by deriving the unitary operator of adiabatic evolution for the leading order. In this way it is possible to show that at least one of the causes of the problem of phase-mixing, whose effect is the polynomial increase in time of the perturbation terms normally called secularities, arises from the shifts of the perturbation energy levels due to the unperturbed part of the hamiltonian. An example is given for a two-level system that, anyway, shows a secularity at second order also in the standard theory of small perturbations. The theory is applied to the quantum analog of a classical problem that can become chaotic, a particle under the effect of two waves of different amplitudes, frequencies and wave numbers.Comment: 13 pages, Late

    Transient resonances in the inspirals of point particles into black holes

    Get PDF
    We show that transient resonances occur in the two body problem in general relativity, in the highly relativistic, extreme mass-ratio regime for spinning black holes. These resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. At such points, the adiabatic approximation to the orbital evolution breaks down, and there is a brief but order unity correction to the inspiral rate. Corrections to the gravitational wave signal's phase due to resonance effects scale as the square root of the inverse of mass of the small body, and thus become large in the extreme-mass-ratio limit, dominating over all other post-adiabatic effects. The resonances make orbits more sensitive to changes in initial data (though not quite chaotic), and are genuine non-perturbative effects that are not seen at any order in a standard post-Newtonian expansion. Our results apply to an important potential source of gravitational waves, the gradual inspiral of white dwarfs, neutron stars, or black holes into much more massive black holes. It is hoped to exploit observations of these sources to map the spacetime geometry of black holes. However, such mapping will require accurate models of binary dynamics, which is a computational challenge whose difficulty is significantly increased by resonance effects. We estimate that the resonance phase shifts will be of order a few tens of cycles for mass ratios ∼10−6\sim 10^{-6}, by numerically evolving fully relativistic orbital dynamics supplemented with an approximate, post-Newtonian self-force.Comment: 4 pages, 1 figure, minor correction

    Enzyme kinetics for a two-step enzymic reaction with comparable initial enzyme-substrate ratios

    Get PDF
    We extend the validity of the quasi-steady state assumption for a model double intermediate enzyme-substrate reaction to include the case where the ratio of initial enzyme to substrate concentration is not necessarily small. Simple analytical solutions are obtained when the reaction rates and the initial substrate concentration satisfy a certain condition. These analytical solutions compare favourably with numerical solutions of the full system of differential equations describing the reaction. Experimental methods are suggested which might permit the application of the quasi-steady state assumption to reactions where it may not have been obviously applicable before

    Noise Effects on Synchronized Globally Coupled Oscillators

    Get PDF
    The synchronized phase of globally coupled nonlinear oscillators subject to noise fluctuations is studied by means of a new analytical approach able to tackle general couplings, nonlinearities, and noise temporal correlations. Our results show that the interplay between coupling and noise modifies the effective frequency of the system in a non trivial way. Whereas for linear couplings the effect of noise is always to increase the effective frequency, for nonlinear couplings the noise influence is shown to be positive or negative depending on the problem parameters. Possible experimental verification of the results is discussed.Comment: 6 Pages, 4 EPS figures included (RevTeX and epsfig needed). Submitted to Phys. Re

    Second-order gravitational self-force

    Full text link
    Using a rigorous method of matched asymptotic expansions, I derive the equation of motion of a small, compact body in an external vacuum spacetime through second order in the body's mass (neglecting effects of internal structure). The motion is found to be geodesic in a certain locally defined regular geometry satisfying Einstein's equation at second order. I outline a method of numerically obtaining both the metric of that regular geometry and the complete second-order metric perturbation produced by the body.Comment: 5 pages, added clarifications in response to referee comments, accepted for publication in PR

    Nonlinear dynamics in one dimension: On a criterion for coarsening and its temporal law

    Full text link
    We develop a general criterion about coarsening for a class of nonlinear evolution equations describing one dimensional pattern-forming systems. This criterion allows one to discriminate between the situation where a coarsening process takes place and the one where the wavelength is fixed in the course of time. An intermediate scenario may occur, namely `interrupted coarsening'. The power of the criterion lies in the fact that the statement about the occurrence of coarsening, or selection of a length scale, can be made by only inspecting the behavior of the branch of steady state periodic solutions. The criterion states that coarsening occurs if lambda'(A)>0 while a length scale selection prevails if lambda'(A)<0, where lambdalambda is the wavelength of the pattern and A is the amplitude of the profile. This criterion is established thanks to the analysis of the phase diffusion equation of the pattern. We connect the phase diffusion coefficient D(lambda) (which carries a kinetic information) to lambda'(A), which refers to a pure steady state property. The relationship between kinetics and the behavior of the branch of steady state solutions is established fully analytically for several classes of equations. Another important and new result which emerges here is that the exploitation of the phase diffusion coefficient enables us to determine in a rather straightforward manner the dynamical coarsening exponent. Our calculation, based on the idea that |D(lambda)|=lambda^2/t, is exemplified on several nonlinear equations, showing that the exact exponent is captured. Some speculations about the extension of the present results to higher dimension are outlined.Comment: 16 pages. Only a few minor changes. Accepted for publication in Physical Review

    Nonlinear dynamics of coupled transverse-rotational waves in granular chains

    Get PDF
    The nonlinear dynamics of coupled waves in one-dimensional granular chains with and without a substrate is theoretically studied accounting for quadratic nonlinearity. The multiple time scale method is used to derive the nonlinear dispersion relations for infinite granular chains and to obtain the wave solutions for semiinfinite systems. It is shown that the sum-frequency and difference-frequency components of the coupled transverse-rotational waves are generated due to their nonlinear interactions with the longitudinal wave. Nonlinear resonances are not present in the chain with no substrate where these frequency components have low amplitudes and exhibit beating oscillations. In the chain positioned on a substrate two types of nonlinear resonances are predicted. At resonance, the fundamental frequency wave amplitudes decrease and the generated frequency component amplitudes increase along the chain, accompanied by the oscillations due to the wave numbers asynchronism. The results confirm the possibility of a highly efficient energy transfer between the waves of different frequencies, which could find applications in the design of acoustic devices for energy transfer and energy rectification

    Theory for a dissipative droplet soliton excited by a spin torque nanocontact

    Full text link
    A novel type of solitary wave is predicted to form in spin torque oscillators when the free layer has a sufficiently large perpendicular anisotropy. In this structure, which is a dissipative version of the conservative droplet soliton originally studied in 1977 by Ivanov and Kosevich, spin torque counteracts the damping that would otherwise destroy the mode. Asymptotic methods are used to derive conditions on perpendicular anisotropy strength and applied current under which a dissipative droplet can be nucleated and sustained. Numerical methods are used to confirm the stability of the droplet against various perturbations that are likely in experiments, including tilting of the applied field, non-zero spin torque asymmetry, and non-trivial Oersted fields. Under certain conditions, the droplet experiences a drift instability in which it propagates away from the nanocontact and is then destroyed by damping.Comment: 15 pages, 12 figure
    • …
    corecore